If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-16t^2+1965
We move all terms to the left:
0-(-16t^2+1965)=0
We add all the numbers together, and all the variables
-(-16t^2+1965)=0
We get rid of parentheses
16t^2-1965=0
a = 16; b = 0; c = -1965;
Δ = b2-4ac
Δ = 02-4·16·(-1965)
Δ = 125760
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{125760}=\sqrt{64*1965}=\sqrt{64}*\sqrt{1965}=8\sqrt{1965}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{1965}}{2*16}=\frac{0-8\sqrt{1965}}{32} =-\frac{8\sqrt{1965}}{32} =-\frac{\sqrt{1965}}{4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{1965}}{2*16}=\frac{0+8\sqrt{1965}}{32} =\frac{8\sqrt{1965}}{32} =\frac{\sqrt{1965}}{4} $
| 10v-v=9 | | –17=7+3x | | 4x+6=-8x+18 | | (1/3)(9k+12)=15 | | 10^x2-26x=-12 | | (-8)*x=-40 | | -2a-6=-10 | | 3x+20=5x+8 | | 0=-16t^2+1972 | | 10x^2+6x=8 | | 7-14m=2-5 | | (x+2)(x–3)–3=11 | | 2x+1=5x+5=180 | | -3(n-5)+5n=-5 | | 3y—20=7 | | 32*x+38=102 | | -8(m-3)=64 | | 4/b=3-2/b | | k/6+4=15 | | 6m−8=22 | | y-47=13 | | -2|3x+7|+8=10 | | 22=8x+10-4x | | 7x+40=3x+40 | | 1/512^2x=1/64^x^2 | | 5x-2+x=9+3x+101 | | -7(-3x-7)=43x+49 | | 180=2x+10+4x+20 | | 12x+5=8x-31 | | -66*x/6=-33 | | 8(m-8)=56 | | -4(-m-3)+8=-28 |